Biology

Thermodynamics refers to the study of energy and energy transfer involving physical matter. The matter and its environment relevant to a particular case of energy transfer are classified as a system, and everything outside of that system is called the surroundings. For instance, when heating a pot of water on the stove, the system includes the stove, the pot, and the water. Energy is transferred within the system (between the stove, pot, and water). There are two types of systems: open and closed. An open system is one in which energy can be transferred between the system and its surroundings. The stovetop system is open because heat can be lost into the air. A closed system is one that cannot transfer energy to its surroundings.

Eukaryotic cells possess many features that prokaryotic cells lack, including a nucleus with a double membrane that encloses DNA. In addition, eukaryotic cells tend to be larger and have a variety of membrane-bound organelles that perform specific, compartmentalized functions. Evidence supports the hypothesis that eukaryotic cells likely evolved from prokaryotic ancestors; for example, mitochondria and chloroplasts feature characteristics of independently-living prokaryotes. Eukaryotic cells come in all shapes, sizes, and types (e.g. animal cells, plant cells, and different types of cells in the body). (Hint: This a rare instance where you should create a list of organelles and their respective functions because later you will focus on how various organelles work together, similar to how your body’s organs work together to keep you healthy.) Like prokaryotes, all eukaryotic cells have a plasma membrane, cytoplasm, ribosomes, and DNA. Many organelles are bound by membranes composed of phospholipid bilayers embedded with proteins to compartmentalize functions such as the storage of hydrolytic enzymes and the synthesis of proteins. The nucleus houses DNA, and the nucleolus within the nucleus is the site of ribosome assembly. Functional ribosomes are found either free in the cytoplasm or attached to the rough endoplasmic reticulum where they perform protein synthesis. The Golgi apparatus receives, modifies, and packages small molecules like lipids and proteins for distribution. Mitochondria and chloroplasts participate in free energy capture and transfer through the processes of cellular respiration and photosynthesis, respectively. Peroxisomes oxidize fatty acids and amino acids, and they are equipped to break down hydrogen peroxide formed from these reactions without letting it into the cytoplasm where it can cause damage. Vesicles and vacuoles store substances, and in plant cells, the central vacuole stores pigments, salts, minerals, nutrients, proteins, and degradation enzymes and helps maintain rigidity. In contrast, animal cells have centrosomes and lysosomes but lack cell walls.

Scientists use the term bioenergetics to discuss the concept of energy flow through living systems, such as cells. Cellular processes such as the building and breaking down of complex molecules occur through stepwise chemical reactions. Some of these chemical reactions are spontaneous and release energy, whereas others require energy to proceed. Just as living things must continually consume food to replenish what has been used, cells must continually produce more energy to replenish that used by the many energy-requiring chemical reactions that constantly take place. All of the chemical reactions that take place inside cells, including those that use energy and those that release energy, are the cell’s metabolism.

In addition to the presence of nuclei, eukaryotic cells are distinguished by an endomembrane system that includes the plasma membrane, nuclear envelope, lysosomes, vesicles, endoplasmic reticulum, and Golgi apparatus. These subcellular components work together to modify, tag, package, and transport proteins and lipids. The rough endoplasmic reticulum (RER) with its attached ribosomes is the site of protein synthesis and modification. The smooth endoplasmic reticulum (SER) synthesizes carbohydrates, lipids including phospholipids and cholesterol, and steroid hormones; engages in the detoxification of medications and poisons; and stores calcium ions. Lysosomes digest macromolecules, recycle worn-out organelles, and destroy pathogens. Just like your body uses different organs that work together, cells use these organelles interact to perform specific functions. For example, proteins that are synthesized in the RER then travel to the Golgi apparatus for modification and packaging for either storage or transport. If these proteins are hydrolytic enzymes, they can be stored in lysosomes. Mitochondria produce the energy needed for these processes. This functional flow through several organelles, a process which is dependent on energy produced by yet another organelle, serves as a hallmark illustration of the cell’s complex, interconnected dependence on its organelles.

A cell is the smallest unit of a living thing. A living thing, whether made of one cell (like bacteria) or many cells (like a human), is called an organism. Thus, cells are the basic building blocks of all organisms.

All cells, from simple bacteria to complex eukaryotes, possess a cytoskeleton composed of different types of protein elements, including microfilaments, intermediate filaments, and microtubules. The cytoskeleton serves a variety of purposes: provides rigidity and shape to the cell, facilitates cellular movement, anchors the nucleus and other organelles in place, moves vesicles through the cell, and pulls replicated chromosomes to the poles of a dividing cell. These protei elements are also integral to the movement of centrioles, flagella, and cilia.

 

Most animal cells release materials into the extracellular space. The primary components of these materials are proteins, and the most abundant protein is collagen. Collagen fibers are interwoven with carbohydrate-containing protein molecules called proteoglycans.

Cells fall into one of two broad categories: prokaryotic and eukaryotic. Only the predominantly single-celled organisms of the domains Bacteria and Archaea are classified as prokaryotes (pro- = “before”; -kary- = “nucleus”). Cells of animals, plants, fungi, and protists are all eukaryotes (ceu- = “true”) and are made up of eukaryotic cells.

This website puts documents at your disposal only and solely for information purposes. They can not in any way replace the consultation of a physician or the care provided by a qualified practitioner and should therefore never be interpreted as being able to do so.